skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Parnin, Christopher"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Successful cross-language clone detection could enable researchers and developers to create robust language migration tools, facilitate learning additional programming languages once one is mastered, and promote reuse of code snippets over a broader codebase. How- ever, identifying cross-language clones presents special challenges to the clone detection problem. A lack of common underlying rep- resentation between arbitrary languages means detecting clones requires one of the following solutions: 1) a static analysis frame- work replicated across each targeted language with annotations matching language features across all languages, or 2) a dynamic analysis framework that detects clones based on runtime behavior. In this work, we demonstrate the feasibility of the latter solution, a dynamic analysis approach called SLACC for cross-language clone detection. Like prior clone detection techniques, we use input/out- put behavior to match clones, though we overcome limitations of prior work by amplifying the number of inputs and covering more data types; and as a result, achieve better clusters than prior at- tempts. Since clusters are generated based on input/output behav- ior, SLACC supports cross-language clone detection. As an added challenge, we target a static typed language, Java, and a dynamic typed language, Python. Compared to HitoshiIO, a recent clone de- tection tool for Java, SLACC retrieves 6 times as many clusters and has higher precision (86.7% vs. 30.7%). This is the first work to perform clone detection for dynamic typed languages (precision = 87.3%) and the first to perform clone detection across languages that lack a common underlying repre- sentation (precision = 94.1%). It provides a first step towards the larger goal of scalable language migration tools. 
    more » « less